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1. Introduction and formulation

It is well-known that there can be a significant difference in behavior in flight between

liquid-filled and solid-filled projectiles. The difference is caused by the motion of the liquid

inside the spinning projectile. This motion causes forces to act on the projectile which can

ultimately cause the flight of the projectile to be prematurely terminated by instability.

The initial motion of the projectile necessarily causes the fluid motion in the cylinder to be

time-dependent; later it can be assumed that the flow is steady. It is the latter situation

which is investigated here.

Our concern then is with the motion of an incompressible viscous fluid of kinematic

viscosity v in a cylinder of length 2Aa and radius a. The cylinder is spinning at a constant

rate about its axis, which, in turn, is nutating at a constant rate and yaw angle about

an axis directed along its trajectory. Throughout this calculation a will be used as an

appropriate length scale while the magnitude of a typical velocity is taken to be (Q +

f cos Ko)a, where Q' is the magnitude of the angular velocity of the projectile as observed

in the aeroballistic reference frame, f is the dimensional coning frequency, and K0 is the

coning angle. (In the aeroballistic frame, one cartesian coordinate lies along the cylinder

axis and a second coordinate lies in the plane of the cylinder axis and trajectory; see, e.g.,

Reference 1). Ko is assumed small throughout this work, so that it is possible to determine
the properties of the forced motion using a simple perturbation expansion in powers of K 0 .

We nondimensionalize the coning frequency as follows:

r = ( f co 0 (1.1)

and we define the P,.jnolds number by

Re = (Q + f cos Ko)a (1.2)
1/

By use of the assumption already introduced, K 0 < 1, cos K0 is replaced by unity in the

above and in the following. The typical time, length, velocity, and pressure scales used to

nondimensionalize the flow variables are (Q + f)- , a, (S + 'r)a, and pa2 ( + r-)2, where p

is the density of the fluid.

In a previous paper, Hall et al.[2] , hereafter referred to as HSG, we used the spatial

eigenvalue approach to determine the forced motion in the projectile at finite values of the

Reynolds number. Here we aim to extend the results of HSG to the high Reynolds number

limit and show that in this case there is a significant simplification of the problem. We

now indicate how the appropriate partial differential system to be solved can be derived
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from the Navier-Stokes equations of motion. Our derivation is of course only brief so the
reader is referred to HSG and the references therein for a more complete account.

First the Navier-Stokes equations are written down with respect to an inertial cylin-

drical polar co-ordinate system (r, 0, x) with corresponding velocity components (u, v, w)

and pressure p. The coning motion of the projectile means that the boundary conditions

must be applied at a moving surface; this is the main drawback in the use of the inertial

reference frame but for small angles a Taylor series expansion of the different flow quan-

tities about the mean position of the cylinder produces boundary conditions at a fixed

surface. Thus it is assumed that the motion of the cylinder is proportional to exp i{ft - 0}
where t denotes nondimensional time and f is , in general, the nondimensional complex

frequency of the projectile motion. We shall take f to be real so that

f = r. (1.3)

Since K 0 , the coning angle, has been assumed small we expect only small depar-
tures from solid body rotation and the velocity components are therefore (-Kou*,r -

Kov*, -Kow*) and the pressure is 1r 2 - Kop*. Here a star denotes a perturbation quan-

tity.

It is assumed in our calculation that the motion of the cylinder is specified; we do not

allow for a feedback from the fluid to the projectile. Following HSG it is convenient to
define complex velocities and pressures, denoted by underlining and given by

(u,v ,w,p*) = Real{(IL,y_,w,p) expi{ft - 0}}. (1.4)

The resulting nondimensional Navier-Stokes equations are

i(f - 1)uL- 2v_ = -p + Re- [V 2u - 2- u + 2i_]- - - 2 - 2

i(f - 1)v + 2u_ = (i/r)p + Re-' -V2V 2i
r2 r2]

(f--1)m=-p + Re l[V 2w- r

(ru)r - iv + rw, = 0,

where V2 = (r + 1,r + 0 and subscripts denote partial derivatives.
We now choose to seek separable solutions of these equations which take the form

( , , p) = (U(r) sin Kx, V(r) sin Kx, W(r) cos Kx, P(r) sin Kx), (1.5)
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and in this case it follows that (U, V, W, P) satisfies

[RC 'k - r -2 ) - iM]U + 211 + (i/r 2 Re)]V - Pr = 0

[Re-'(V, - r2) - iM]V - 2[1 + (i/r 2 Re)]U + p = 0
r (1.6a, b, c, d)

[Re-'V1 - iM]TV - KP = 0

(rU)r - IV - KrI = 0.

where M=f -1

and V, = drr + -d, 1 [9 + K].

These equations must be solved subject to an inhomogeneous condition at r 1 and an

appropriate condition at r = 0. We obtain

U-iV=W=P=O, r=O (1.7)

at the centre of the cylinder. For a discussion of the origin of (1.7) thc reader is referred

to Batchelor and Gill 3]. The ordinary differential system specified by (1.6),(1.7) and the

the no-slip condition at the cylinder constitutes an eigenvalue problem

K = K(Re, f). (1.8)

At finite values of Re there are no real solutions of that eigenvalue problem so that

solid body rotation is stable to the first non-axisymmetric Taylor vortex mode of instability.

At infinite values of Re solid body rotation is, according to Rayleigh's criterion, neutrally

stable and this is the origin of the real values of K which that eigenvalue problem has in

the limit Re -. o. We restrict our attention to the case when the pivot point for the

cylinder is midway along its axis. From Gerber et al.['] we know that the forced problem

at small amplitudes then leads to the following conditions for u, v and w at the walls:

u = -i(1 - f)x,

t,= -(1 - f)x, (1.9a, b, c)

w = i(1 - f)r.

Following HSG we transfer the inhomogeneous boundary conditions to the endwall by

writing
= -i [1 - f]x + u(r, x),
= -[1 - fiX + v(r,x),

= i[1 - f]r + O(r) + w(r, x), (1.1Oa, b, c, d, e)

p = -[1 - f 2 lrx + p(r, x),

O(r) = 2ifr J (Ar)

3



Here J1 denotes the order 1 Bessel function of the first type while A is defined by

A = (1 + i),1(1 - f)Re/2. (1.11)

Since we will be interested in the limit of high Reynolds numbers we can drop the Bessel

function terms in (1.10) away from r = 1. We note in passing here that A, and hence u

etc. have a branch cut at f = 1; we will not investigate such high frequencies here since

the ballistic applications of our work typically correspond to values of f less than .5 . In a

separate study eigenvalues and the pressure coefficient cp were calculated for 1 < f < 1.5.

The results were to be compared with experimental data for f > 1. In terms of u, v, w and

p it follows from above that the appropriate boundary conditions are

u-;v=w=p=0, r=0

u=v=w=0, r=1 (1.12a, b,c)

u=v= 0,w=-¢(r) x=:hA.

Furthermore, we note that u, v, w,p satisfy (1.5) and (1.6) and following the spatial eigen-

value approach of HSG we therefore write

Sa, sin knx V a, sin knx
u sin k A sinkA r),

n=1 n=1
00 a=n C(1.13a, b, c, d)Z a. cos knx asin k~x

w = E w(r), p =
n= sin knA sinkA pn(r).

Here {kn} is the infinite sequence of eigenvalues of (1.6), (1.7) and the coefficients {an}

are to be determined. In HSG these constants were found by collocation at the endwalls;

here we shall make the further limit Re -+ 00 and show how asymptotic expressions for

these coefficients can be found.

2. The spatial eigenvalue approach in the limit Re --* oo.

On the basis of our experience with the eigenvalue problem for { k,} at finite values

of Re we know that the eigenvalues split into groups of three which can be ordered by,

for example, connecting them to the eigenvalues of a related Taylor vortex problem. We

anticipate this split and therefore consider the three sets of eigenvalues { kj, },for j = 1, 2, 3

and n = 1,2,3.... The distribution of eigenvalues is illustrated in Figure 1 for the case

Re = 1000 and f = .1; this is taken from HSG wheren the labeling of the eigenvalues is

discussed. (Note that the eigenvalue k3,1 was labeled on the basis of an analysis pertinent

to the limit Re -* 0. However, in the limit Re --+ oo, it lies in the set of values determined

4



by Stewartson's analysis[5].) In Figure 2 we show the development of the spectrum as Re

increases, for fixed f and j = 1. We note that for sufficiently small n the eigenvalues

approach the real axis while f,-ir large n the eigenvalues approach the imaginary axis.

On the other hand numerical calculations in HSG showed that the j = 2,3 branches

had I kj. I- Re 2 for Re >> 1. We shall now describe the precise details of the asymptotic

structure of {kjn} for j = 1,2,3 in the limit Re --+ oo and hence put ourselves into a position

to find asymptotic forms for {an}. Splitting of the eigenvalues into triplets leads naturally

to the deinitions of branches 1 , 2 and 3 in the complex k plane for j = 1, 2,3 respectively.

The corresponding amplitude functions are denoted by en, y,. and/3. , replacing the a.

First we derive the asymptotic structure of the j = 1 modes; the analysis is, of cou. se,

essentially inviscid and based on that given by Stewartsonl[ ]. We seek an asymptotic

solution for the nth eigenvalue kin by writing

kin = kon + knRei- + knRe . +..., (2.1)

while

-= U + UinR ue. Re+e- . (2.2)

together with similar expansions for VI , W1 and PIn. If we define a by

a= iff - 1}

then substitution of (2.1), (2.2) into (1.6) with K replaced by kin yields a system of

equations for u1n, vi, W°nP° which has the solution

{02 + 4}uo° = i{(1 - , + 2J,(P°lr) }

f 2 J1 (Po r) 0 0

= ornJ(GA Irr),
00

Pi = JI(Pognr).

=(ko )2 (3 - f)(1+ f)

The radial velocity component above satisfies the sidewall condition if

(1 - f)PPLJI(,l) + 2J 1 (,n) = 0 (2.5)

5



which has an infinite number of eigenvalues on the positive real axis. [Information on this

spectrum can be found in 'Conduction of Heat in Solids' by H.S.Carslaw and J.C.Jaeger,

Oxford University Press, 1947.] The eigenvalues with j = 1 become progressively closer

to the real axis in the limit Re -+ 00. The Stewartson eigenvalues correspond to a choice

of frequency such that kn A = {1 + N} for N an even non-negative integer. Thus, at

the resonant frequencies of a cylinder of given length, the j = 1 eigenvalues approach

Stewartson's eigenvalues. Since we have not retained viscous effects in the perturbation

equations, we can, of course, only make the radial velocity component vanish at r = 1.

The other velocity components must therefore be reduced to zero within a boundary layer

of thickness Re-2 near r = 1. The determination of the velocity field within this layer

will enable us to determine the order Re- term in (2.1), we shall give some of the detail

necessary to determine it.

First we note that the perturbation equations for r = 0(1) proceed in powers of Re so

that if we define pin by
0 Pin il. +Pin e-2+ .. .(2.6)

then correct to order Re ,, (2.3) are valid if u°,,vi ,° wan, 0Pi and /l0 are replaced by

u°,, + uln Re-2, etc. and then

0 1=o : (3-f)(1+f) (2.7)Pi'n~in = konkln (1_ )
In f)2 (27

It follows that when r -+ 1

(3- f)(1 + f)
(3- f)(1 +" f)Uln "-+ -in ifoln Jl(P0n)(l f) [1 + (Pon )2(l - ]) , (2.8)

where C = Re1 (1 - r), and C is a constant to be determined later. In the boundary layer

at r = 1 we write

Re2u1l = i+ IRe-2 +

together with similar expansions for vi n, Win, and Pln. It can be shown that the zeroth

order system obtained by substituting these expansions into (1.6) written in terms of C

yields

= constant, in~ =1 +lf V +(k 1 +

6



when solved subject to io = 0 = ti0 = 0, = . Thus matching the pressure and

radial velocity component when the inviscid and viscous regions meet give

iJ1 (.ll)[1 + (k°O) 2 ] _P i°J 1 (P.)(1 - f) ', 1+ (3-f)(1+f) ,in0 Jl (Poln),In I+ )l-f2
(1 - f)aU (3- f)(1 + f) !+ (Po(1 f)2 1

and an expression for C the constant in (2.8). Using (2.7) and the eigenrelation (2.5) the

second of the above equations can be manipulated to give

k1,, = k°{1 + = + (2.9)

where k?. is determined by (2.4) and (2.5).

The viscous modes have an x-dependence on a Re-1 lengthscale. For convenience we

drop the '2n' and '3n' notation for the moment and seek a viscous eigenvalue of (1.6) and

(1.7) by writing 1

k=V k0 + k, + (2.10)

while u, v, w, and p expand as

1
U = UO + - Ul +

1V = V0 + Rie-l +'-.,
Re ( 2.11a, b, c, d)

WO W

Re ReA

The zeroth order approximation to (1.6) then yields

{-k2 - if + i}uo + 2vo = 0,

{-ko - if + i}vo - 2uo = 0, (2.12a, b, c)
duo

wo -- /k .

The equations (2.12a,b) are consistent if

0k2 = (3 -f)i

or = ( 1 + (2.13a, b)
or ko =-_(1 +f)i

7



which correspond to the j = 3 and j = 2 modes respectively. At higher order uO, and hence

vo, wo and p0, are determined as solvability conditions. We find that (2.13a,b) respectively

lead to
Uo = J2(snr), uo = Jo(tnr) (2.14a, b)

where

J2 (S.) = Jo(t,) = 0.

A more detailed derivation of (2.14) is found in HSG. Thus (2.13a,b) correspond to two

countably infinite sets of eigenvalues and {s.}, {t,,} determine the order Re-2 correction

terms in the expansion of k. In fact the appropriate equations are found to be

ki = -(1 - i)(4 - f)s(2.15)
2 2(3- f) 3  (2.1

and kl= -(2 + f)e (1 ± i) (.6
ki -(2 n(2.16)2vr(l + f)3 /2

Henceforth we refer to the eigenvalues corresponding to (2.13a,b) using the indices j = 3
and j = 2 respectively. The structure outlined above breaks down when n is formally

0(Re) in which case the eigenfunction has both axial and radial variations on the Re-

lengthscale. We can now modify the spatial eigenvalue expansions (1.13a,b,c,d) using the

asymptotic structure developed above; we therefore write:

00 _____ _______ r) sin k? XU (f+ + {3-i/nr + (1 -f)PanJ°(#nr)J sink~hA

+-JO(tnr) sinA2X sinAi.x

sn2A+ / 3nJ2(snr)-AsininA A
- [ n rP-.n- - + sin k n-.

3 }{1 + f + +Ji(i°r) 2 Jo(O) sink°A

- sinA2 x sinA, 1-i'y, Jot,,) sn +,i ,J(s,')iA J..

SE iknJ1 cos k° z

I (f ( f ) sin k nA +

00 i(~r sin ko x+
P Cn~l(,Uonr) AA& sin --sin k°n

(2.17a, b, c, d)



where

A =(1+i) 2 =(1-i) v

We now apply the endwall condition (1.12c) on the axial velocity component w to give

-2if r -- In J"° J(Ponr) cot k°onA

(f 1-1) 1

so that after multiplying both sides of the equation by rJ1 (plnr), integrating from r = 0

to r = 1 and using the well-known properties of Bessel functions we obtain

4f(3- f)tank(. A
En - (2.18)

while the endwall conditions on the radial and circumferential velocity components 3 jeld

equations which can be solved for {3n} and {tn} in terms of {en}. It is at this stage
that the differences between the finite and infinite Reynolds number have emerged. Thus

the amplitude functions {E}, {i3} and {7} in the limit Re approaches oo can be found

explicitly using orthogonality properties of Bessel functions. At finite values of Re HSG
found it necessary to use either collocation or a least squares approach in order to find the

corresponding amplitudes. At higher order in the procedure that we have begun above,
the sidewall boundary layer comes into play at the endwalls; at that stage the higher order

amplitude coefficients must be found by collocation or the least squares method.
It follows from (2.17d) and (2.18) that p on the endwall, x = A, can be expressed as

the infinite series

4f3 k tan kO.A Ji(Ponr) (2.19)
= (A'sn)2J1 A(p0 )[1 + (k°,)J'(

which is correct up to order Re° .

The pressure coefficient

We shall now use the high Reynolds number form of the spatial eigenvalue approach
to find the pressure exerted by the fluid on the container. Since almost all of the available

experimental results for pressure correspond to measurements made at the endwall we shall
concentrate on that situation. More precisely we use our theory to find the amplitude of
the pressure measured by a pressure transducer located at the endwall. More detail of the
derivation of this pressure coefficient can be found in Gerber et al.[4]

First we note that p+ , the pressure calculated from the Navier-Stokes equations is

+1 2p+ =-sr - Kop*,
2

9



in the case K0 --+ 0. We must now relate our calculations in an inertial frame to the frame

F I, i used in HSG where the i axis coincides with the cylinder axis. A routine calculation

based on a Taylor series expansion shows that, for example

12 _
2 - I/f cos{ft - } + 0(K2)

2 2

We now let Ap be the disturbance pressure not including the contribution from solid body

rotation. At points fixed on the surface of the cylinder

Ap= !r2 _ Kop-(r,,t) 2

22

and since p*(F, i, i, t) - p*(r, 0, x, t) = 0(Ko) it follows that

Ap = -Ko[-p. sin(ft - 0) + (P + rx) cos(ft - 0)] + o(K02).

Here subscripts r and i denote the real and imaginary parts of a complex quantity. Now

since

Er + rx = Pr +f 2 rz, p=pi

the pressure coefficient cp - K 0 may be written as

= (PrrX)2 + p
Cp (2.20)

It then follows from (2.19) and (2.20) that cp calculated using the spatial eigenvalue ap-

proach in the limit Re -- oo is given by

4f(1- f) 2 1 tan kOA J1 (yonr)
c = 1 + f k°,[1 (k°,)2]J 1 (,4°) + f2 rA + O(Re- ). (2.21)

The above equation is not uniformly valid since at the Stewartson eigenfrequencies

the unperturbed state can support neutral eigenfunctions. However, it is clear that cp
will become unbounded if k? corresponds to one of the Stewartson eigenvalues in which

case tan k? A = oo. In fact our expansion procedure is readily modified to take account

of this possibility. Suppose then that f is an eigenfrequency I of the inviscid problem.
Without any loss of generality we can suppose that k?1 A = 7r/2 so that El is formally

infinite. In order to remove this singularity we note from (2.18) that if higher order terms

are retained then e1 is in fact 0(Rei) when f = f. Since k °o = k°(f) and we wish to

obtain a correct zeroth order approximation to cp for all values of f we must therefore

10



modify (2.17) for f O(Re-1). Thus (2.21) is the correct zeroth order approximation

to c, for f f>> (Re- 4 ); we refer to this situation as the nonresonant case.

It follows from our calculations above for the nonresonant case by taking the limit

f --+ f that E1 , {n}, {"yn} for all n becomes formally O(Re+]) when f - f= O(Re-2).

We therefore make use of the new scalings inferred above and therefore replace (2.17)

by

i - N/-"e (1 + f) ji(kOjr) + (1 - f) ojJo(pO r) + - - } sin klx
(3 - f)(1 + f) r sin kjlA00 Ent 1 +f 0 sin k°,,x

+E ( 3 -f)(l+f) { J (pLnr)+ (1-Jf)PnJo(p'nr) +.-.} sin kO A
2 

in

-rvII-e -n.Jo~tnr) sin.\2XA

sin 1\2
-1- -J 2 sin Ax
r,., On 2 s.,r) - + "
1

0sr) inn kA

V 3f( +){ J f~ l ~r ) ±/lO/Ll)+ sinll
+- e rR- -(1 + P 2J°(o °r) + .. sink x
(3- f)(1 + f) r sin k1A

00si x

sin n°+J 
0(° ,,,) 0 sin k 0

(3 - f)(1 + of) r ++s
2 in

00 iA

+ z/-- n J2 (s in ) +A

1 V~~Jv'~ sinAA±

+ R- > i -Yt (t r) +si. +oA

1( )sin A2A +...

11

W j = kl) fiVrRe[j(pllr )  -- cos kllx
(f -_~ 1) o + "sink,,A

+00'(-l° ikOn koJ(Pn "s'n1 cs°x

+ E -fn [(,. )( -) +cos -1 Co
2 ( f - f / sin k---n+ "
00 -7 t '(nr)(1 - i) cos A x

0/- -7 2 sin A--IA "

o +f\2 sin A2

P=4 vf-e J, (140, r) sin klx +0(I),

(2.22a, b, c, d)
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We note that in the above expansion f formally differs from f by O(Re- ). If we

now apply the endwall conditions on the radial and circumferential velocity components

we find, after using the well-known orthogonality properties of Bessel functions, that

-U~j2(ti fjrJo(p °ir)Jo(t~r)dr,
(1 + f) , (2.23a, b).

fl '2- (3 - f) f f rJ2(pojr)J2(s r)dr"

The endwall condition (1.12c) on the axial velocity component then gives

ikil l v/-e' y E'lo Jo (yrr cot knA, + ei°Y(°rct k ° A

(f1-') 2(f-1

+ s,/3,J(sr)(1 -i)cot AIA

1

-YntnJ(tnr)(1 + i) cotA 2A 2ifr.

We now multiply the above equation by rJ1 (p I Ir) and integrate from r = 0 to r = 1

and replace f, and -Yn using (2.23). After some manipulations we can show that

(1 ) 2J(P1)(f - )2 AJ2ii

el cotkiA(1+2 o -1t2 (kl- f 71 f

(1 +i)cot AA (ol)J(oOs)sf(3 - ) /
2-f)3/2 (2.24)

(1 -i)cot A 2A(,) 2 j(t, 1 )5 2j

- 2f ()

P11

where
00S, SnZn

1.. [(pO0)2 _S~n]JI(Sn)S2 E -0 n - t2]2l .

00 [(#41)2 .t ]2

Here zn = f. rJ (snr)J(pollr)dr We note that in (2.24) v'ecot klIA O(Re° ) because

f differs from I by O(Re- 1 ). Finally we note that cot A 1A and cot A2 A to this order can be

12



replaced by -i and +i respectively. Thus with E1 given by (2.24) the pressure perturbation

is
P = El V/-eJ,(M'l r )  (2.25)

which is of course O(Re 4) larger than that in the non-resonant case. It can be shown from
(2.24) that when 1 >> f-f >> Re- the equation (2.25) is consistent with that obtained

from (2.19) by taking the limit f -- f. Thus the formula

p=f e1  eJ1 (y4r) + z'O 4f(1 - f) 2  tan klA J(,r) (2.26)
2 (1 + f) (k(.)[1 + (k2

gives a correct zeroth order approximation to p for all f. The pressure coefficient cp is

thus given by
4f(1 _ f) 2  tan kOnA J1(P°nr)

(1 + f (ko)[1 + (ko,,) 2 ]J 1(°,) (2.27)

+f 2rA + EivfReJl(p °r)

with el1 given by (2.24).
Wc close this section with a discussion of the relationship between our resonant expan-

sion procedure discussed above with the viscous correction to Stewartson's inviscid theory
given by Wedemeyer[6]. In the latter paper Wedemeyer showed how a viscous correction
to the inviscid theory could be obtained by considering viscous boundary layers at the
ends and sidewall of the cylinder. (We observe that a and 8 of Eqs.(33a) and (33b) of
Reference 6 are related to A1 and A2 on p.9 of this paper as follows: A1 = iaa, A2 = -ia3.)
We note that away from the endwalls the terms that appear inside the summation signs in
(2.22) are exponentially small. The term that remains in the expressions for the velocity
and pressure corresponds to Stewartson's eigenvalue. However the axial wavenumber used
there is k1l correct to order Re- 1/ 2. Thus there is a viscous correction in our expansion
that arises from the fact that we choose to continue the inviscid expansion in order to
take care of the viscous sidewall layer. Thus the modified eigenfunction we have used is
precisely that implied by Wedemeyer's equation (16). At the ends of the cylinder all the
ratios of the trigonometric functions are 0(1) so that all the terms are to be retained. Now
the terms proportional to sin(Ajx), cos(Ajx) are needed in order to satisfy the endwall
conditions. If we choose to look at the unforced problem, then it can be shown that the
effect of these terms is exactly equivalent, in a formal asymptotic sense, to Wedemeyer's
conditions (18,19). Thus, for the unforced problem at the resonant frequency, our expan-
sion is equivalent to that of Wedemeyer. Notice, however, that the form of our expansion

13



enables us to determine in a precise asymptotic form the forced velocity field both at the

resonant frequency -nd elsewhere. That is not the case for Wedemeyer's theory so we can

interpret (2.22) as being a generalization of Wedemeyer's work to the forced problem at

all frequencies.

3. Results and Discussion

We shall give results only for the composite expansion (2.27) rather than plotting

separately the resonant and non-resonant expansions. In particular we will compare our

results with those of Whiting[7] who investigated the problem experimentally. In Figures

3a,b,c we compare with experimental data for the pressure coefficient measured at r = .668

with A = 3.1481 at three different values of the Reynolds number. Also shown in these

figures are curves representing theoretical results from Gerber et al.[4] and Murphy8 1 . Both

of the latter calculations used approximate endwall conditions obtained using Wedemeyer's

approach. At Re = 5 x 10' the results of the present approach and Reference 7 agree more

closely with experiment than the results of Reference 4 theory. At Re = 10 the present

theory gives as good agreement with the theory as the other approaches but at the highest

value of the Reynolds number our method overestimates the pressure coefficient at the

resonant frequency. Apart from the immediate neighborhood of the resonant frequency

the different theoretical approaches at the two highest values of Re are in agreement.

The difference between the predicted resonant response and the experimental data could

presumably be eliminated by proceeding with the present calculation to the next order.

In Figure 4 we show a similar comparison at A = 1.0509; again we see that the

differences in the two approaches are small except for a small interval near the resonant

frequency. In Figure 5 we show the variation of the resonant frequency with Reynolds

number for A = 3.1481.

In Figure 6 we show 3D plots of the pressure coefficient at two different Reynolds

numbers over a portion of the aspect ratio-frequency plane. Equal intervals in f and A are

used in these plots. The localized peaks correspond to resonant responses caused by the

excitation of one of the Stewartson modes. Such plots are useful in picking out portions of

parameter space with certain properties; more detailed plots or variations can be obtained

from the program written to calculate cp. A few points about the approach that we have

developed here are in order:

1. The composite expansion is relevant whenever any one of the Stewartson eigenvalues

occurs; the eigenvalue whose eigenfunction is rescaled by a factor v/'Re is taken to be that

eigenvalue.

14



2. The computational time for the present approach is comparable to that required

for the different approaches mentioned above. For example all the calculations used to
supply the data for the 3D plots (with 2500 nodes) were carried out in about one hour on

an Olivetti M24 PC.
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Figure 1. The first 72 eigenvalues for Re - 1000,f = 0.1
(taken from Reference 2).

16



5 0= Re = 10000
A=Re = 2500 x
X=Re = 1000 O
I= Re = Inf.

4

A

3 f =0.08 x
0

2 0

x

0

X A 0

x A 0
0 1 ~ U ' '

0 2.5 5 7.5 10 12.5 15 17.5 20

KR

Figure 2. The eigenvalue spectrum for some large values of Re
and f 0.08

17



.8 70
o/

0~0

U

.4

o Expt.-.-Ref. 7
Ref. 4 Theory

.2 Present Theory

Ref. 8 Theory_

0
.03 .04 .05 .06 .07 .08

f

Figure 3a. The behavior of Cp calculated using the composite
expansion with A = 3.1481, Re - 5000. The experimental
points are from Reference 7.
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Figure 3b. The behavior of Cp calculated using the composite
expansion with A = 3.1481, Re - 100,000.

19



7 . . . -

0Expt.--Ref. 7I I Refs. 4 and 8 Theories
GI I PresentTheory------

5

4

0

.035 .04 .045 f.05 .Ob5

Figure 3c. The behavior of Cp calculated using the composite
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Figure 4a. The behavior of cp calculated using the composite
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